

Jeff’s Laboratory

NMSW03 – Flight Manager Estimator
Comments Revision Date Author

Initial Release A February 2, 2025 J. Mays

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

2

1. References
1. NMSW01 - Flight Manager Sequencer

2. Purpose

This document describes the ESTIMATOR software capability as illustrated in Simulink, and then further
discussed in C/C++ software. The ESTIMATOR uses states from the SEQUENCER [1] and the sensor suite to
derive flight estimated states such as tilt angle, thrust, and altitude. The downstream logic then uses these
states for control and event logic.

Original implementation was written in Simulink and then derived into C/C++ software for compilation onto
hardware. Custom Simulink and C/C++ libraries were created to align the two languages. The Mathworks
autocoder was not used as this was developed on the home license as a home project.

3. Design Description

The purpose of the Flight Manager (FM) Estimator (Est) software is to read sensor data and convert it into
signals that are required for downstream software. This includes information like the attitude of the vehicle
during boost, or the rate of ascent. This document will discuss the algorithms and software that make up the
ESTIMATOR software.

Figure 1: Estimator

4. Interface Control Document

The ESTIMATOR SWC output bus is shown below. This SWC is called by the FLIGHT_MANAGER, and its elements
are populated to the vehicle state vector every cycle count.

Table 1: ESTIMATOR input bus

App Direction Hierarchy Element DataType Unit Size Comment
fm out seq segment uint16_t -- 1 FM sequencer state
fm out seq state uint16_t -- 1 FM state

fm in sns.imu gyro_iv_v float rad/s 3
IMU measurement of angular velocity in the NAV
frame

fm in sns.imu f_iv_v float m/s/s 3
IMU measurement of sensed acceleration in the
NAV frame, m/s/s

fm in sns.baro press_pa float Pa 1 Barometric pressure, Pa
fm in sns.baro temp_c float C 1 Measured temperature, C
fm in sns.volt_reg battery_analog int16_t -- 1 ADC of the voltage divider on the battery

fm in sns.volt_reg bec_analog int16_t -- 1
ADC of the voltage divider on the battery
eliminator circuit

fm in sns.volt_reg servoA_analog int16_t -- 1 ADC of the voltage divider on the A servo bus
fm in sns.volt_reg servoB_analog int16_t -- 1 ADC of the voltage divider on the B servo bus
fm in sns.volt_reg nav_analog int16_t -- 1 ADC of the voltage divider on the nav bus
fm in sns.volt_reg igniter_analog int16_t -- 1 ADC of the voltage divider on the pyro igniter bus
fm in sns.volt_reg chuteA_analog int16_t -- 1 ADC of the voltage divider on the A chute pyro
fm in sns.volt_reg chuteB_analog int16_t -- 1 ADC of the voltage divider on the B chute pyro

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

3

Table 2: ESTIMATOR output bus

App Direction Hierarchy Element DataType Unit Size Comment
fm out est.power battery_voltage float V 1 Measured battery voltage
fm out est.power bec_voltage float V 1 Measured BEC voltage
fm out est.power servoA_voltage float V 1 Measured A servo bus boltage
fm out est.power servoB_voltage float V 1 Measured B servo bus boltage
fm out est.power nav_voltage float V 1 Nav bus voltage
fm out est.power igniter_voltage float V 1 SRM pyro igniter power bus voltage
fm out est.power chuteA_voltage float V 1 Chute A pyro voltage
fm out est.power chuteB_voltage float V 1 Chute B pyro voltage
fm out est.state quat_uf float -- 4 Attitude quaternion from UEN to FAB
fm out est.state eul_uf float rad 3 Euler attitude from UEN to FAB
fm out est.state tilt float rad 1 Vehicle tilt with the vertical axis
fm out est.state heading float rad 1 Heading of tilt

fm out est.state accel_sensed_up float m/s/s 1
Sensed accel in the up direction with the UEN
frame

fm out est.state alt_AGL float m 1 Above ground altitude
fm out est.state alt_dot float m/s 1 Vertical velocity
fm out est.state mach float -- 1 Mach number
fm out est.state rho_air float kg/ft^3 1 Density of air
fm out est.state qbar float Nm^2 1 Dynamic pressure

fm out est.nav omega_ic_c float rad/s 1
Inertial sensed angular velocity in the body
frame

fm out est.nav accs_ic_c float m/s/s 1
Inertial sensed acceleration in the body
frame

fm out est.nav bit_complete bool -- 1 Sensor BIT complete
fm out est.mass mass float kg 1 Estimated mass
fm out est.mass com float m 3 Estimated center of mass
fm out est.mass inertia float kg-ft^2 6 Estimated inertia tensor
fm out est.thrust thrust float N 1 Estimated thrust

5. Pre-Configured Gains

Each SWC has an initialization subroutine that initializes parameterized gains. The gains are first defined in
Matlab, and then are autocoded into a Cpp file for reference during compilation of the Cpp version of this SWC.
The following code snip shows the gain subroutine for ESTIMATOR.

function [gains] = init_gains_est(config)

% Load common gains
common = init_gains_common([]);

%% Power
gains.power.R1 = 160000 * C_OHM;
gains.power.R2 = 38300 * C_OHM;
gains.power.uC_voltage = 3.3 * C_V;
gains.power.adc_bits = 12;

%% SNS BIT

gains.bit.sns_time = 3.0 * C_SEC;
gains.bit.sns_window_size = 200;
gains.bit.accel_mag = 9.80665 * C_M/C_SEC/C_SEC;

%% Attitude Accel-Gyro Complementary filter

gains.attitude.alpha = 0.98;
gains.attitude.acc_dyn_env = 0.05 * C_M/C_SEC/C_SEC;

%% Altitude Baro_INS Complementary filter

gains.altitude.alpha = 0.98;
gains.altitude.accel_filter.wn = 10*C_HZ;
gains.altitude.accel_filter.zeta = sqrt(2)/2;

gains.altitude.hdot_filter.wn = 10*C_HZ;

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

4

gains.altitude.hdot_filter.zeta = sqrt(2)/2;

%% Frame locations

% Load our models used to parameterize the sim. And use nominal MC index
mc = SimCore.MonteCarlo(0);
[cnst.vehicle, tnbl.vehicle_tunable] = loadJ2Parameters(mc);
% Load battery with config
% Load SRM with config

% Run the multibody script we use in the simulation to pack mass parameters
% together

% Frame rotations
gains.frame.quat_vf = cnst.vehicle.frame.quat_vf;
gains.frame.quat_fc = [1;0;0;0]; % COM and FAB are aligned always

% NAV frame in the vehicle about FAB
gains.frame.r_fv_f = cnst.vehicle.frame.r_fv_f;
gains.frame.v_fv_f = [0;0;0];
gains.frame.a_fv_f = [0;0;0];

% TVC frame
gains.frame.r_ft_f = cnst.vehicle.gimbal.r_ft_f;

% COM frame in the vehicle about FAB

% FIX ME!!! THIS IS NOT CORRECT!!! See comment above
gains.frame.r_fc_f = single(cnst.vehicle.frame.r_fc_f);
gains.frame.v_fc_f = [0;0;0];
gains.frame.a_fc_f = [0;0;0];

%% Mass
gains.mass.mass = single(tnbl.vehicle_tunable.mass.mass);
% COM defined in frame
gains.mass.inertia = single(tnbl.vehicle_tunable.mass.inertia);

%% Thrust
% Load our models used to parameterize the sim. And use nominal MC index
mc = SimCore.MonteCarlo(0);
[~, srm_tunable] = loadSRMParameters(mc, config);

% We are going to average the thrust vector, and assume thrust is constant
% over the BOOST segment. This way, if our estimate of thrust is incorrect,
% it wont mess up the stability margins

% Equally spaced thrust lookup
thrust = interp1(srm_tunable.time_lookup, srm_tunable.thrust_lookup, linspace(0, max(srm_tunable.time_lookup),
10000));

% Find thrust average for all non-zero datapoints
thrust_nonzero = thrust(thrust>0);
thrust_average = mean(thrust_nonzero);
gains.thrust.thrust_average = single(thrust_average);

% figure; hold on;
% set(gca,'fontname','Consolas')
% plot(srm_tunable.time_lookup, srm_tunable.thrust_lookup, 'LineWidth', 2)
% yline(thrust_average, 'r', 'LineWidth', 2)
% grid on; grid minor;
% xlabel('Time [sec]')
% ylabel('Thrust [N]')
% legend('Thrust Lookup',['Thrust Average (' num2str(thrust_average,3) ' N)'])
% xlim([0 max(srm_tunable.time_lookup)+1])

%% State
% Need speed of sound to derive mach number
gains.state.speed_of_sound = 343.0 * C_M / C_SEC;

end

6. Software Logic

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

5

A high-level capture of the FLIGHT_MANAGER software logic is shown in Figure 2. The Simulink ESTIMATOR
software capability is highlighted.

Figure 2: Flight Manager

The ESTIMATOR software capability is shown in Figure 3. It is broken up into NAV, STATE, THRUST, and POWER
subsystems. Each of these subsystems will be discussed in the following section.

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

6

Figure 3: EVENTS software capability

6.1. NAV

The navigation subsystem is shown in Figure 4. This system has two functionalities

1. Performs the gyroscope and accelerometer calibration. This is intended to be performed when the
vehicle is not moving and completely upright with the body axial axis aligned with the up local
geographic frame.

2. Kinematically transitions the sensed states, which are sourced from the navigation (NAV) frame to the
center of mass (COM) frame.

Figure 4:ESTIMATOR/NAV

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

7

The SNS_BIT and the ACCEL_BIAS_SCALE blocks are shown in Figure 5 and Figure 6. The bias and scale of the
gyroscope and accelerometer are found through the following equations

𝝎𝑏𝑖𝑎𝑠 = 𝝎̂𝑠𝑒𝑛𝑠𝑒𝑑 (1)

𝑎𝑖,𝑠𝑐𝑎𝑙𝑒 = [𝑔𝑚𝑎𝑔 ∗
𝒂̂𝑠𝑒𝑛𝑠𝑒𝑑

‖𝒂̂𝑠𝑒𝑛𝑠𝑒𝑑‖
]

𝑖

𝑎̂𝑖,𝑠𝑒𝑛𝑠𝑒𝑑⁄ (2)

𝒂𝑏𝑖𝑎𝑠 = 𝒂̂𝑠𝑒𝑛𝑠𝑒𝑑 ∗ 𝑎𝑖,𝑠𝑐𝑎𝑙𝑒 − 𝒂̂𝑝𝑎𝑑 (3)

where 𝝎̂𝑠𝑒𝑛𝑠𝑒𝑑 and 𝒂̂𝑠𝑒𝑛𝑠𝑒𝑑 are moving average vectors of the gyroscope and accelerometer measurements,
𝑔𝑚𝑎𝑔 is the desired magnitude of the sensed acceleration vector, 𝑎𝑖,𝑠𝑐𝑎𝑙𝑒 is the estimated accelerometer scape
factor, and 𝒂̂𝑝𝑎𝑑 is the expected accelerometer reading while on the pad (using a simplified assumption that is
sufficient for this application). We also output a BIT complete flag to indicate when the bias has been found.
This flag is set to true after a certain time passes. Should the SNS BIT be re-performed, the states of the
system reset, allowing the process to occur again.

Figure 5: ESTIMATOR/NAV/SNS_BIT

Figure 6: ESTIMATOR/NAV/SNS_BIT/ACCEL_BIAS_SCALE

The KINEMATICS library block is used to move the sensed angular velocity and linear acceleration from the
NAV frame to the COM frame. We can use the DCM, 𝐶𝑣

𝑓, from the NAV frame, 𝑣, to the FAB frame, 𝑓 to rotate the
sensed states into the COM frame. If we assume the body is rigid, then we can simply multiply the sensed
angular velocity by the DCM as shown in the following equation. Note that 𝐶𝑓

𝑐 is an identity matrix that describes
the FAB frame to the COM frame.

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

8

𝝎𝑖𝑐
𝑐 = 𝐶𝑓

𝑐𝐶𝑣
𝑓

𝝎𝑖𝑣
𝑣 (4)

Given we know the rigid parameters of the vehicle, we can also derive the sensed acceleration at the center of
mass as a function of the sensed acceleration at the NAV frame minus the acceleration effects from off-axis
rotations.

𝒂𝑖𝑐
𝑐 = 𝐶𝑓

𝑐𝐶𝑣
𝑓(𝒂𝑖𝑣

𝑣) − 𝐶𝑓
𝑐(𝜶𝑖𝑣

𝑓
× 𝒓𝑐𝑣

𝑓
− 𝝎𝑖𝑣

𝑓
× 𝝎𝑖𝑣

𝑓
× 𝒓𝑐𝑣

𝑓
) (5)

Figure 7 illustrates the Simulink code that contains the above formulations.

function [gyro_ic_c, accel_ic_c] = kinematics_nav_to_com(gyro_iv_v, accel_iv_v, r_fv_f, r_fc_f, a_fv_f, v_fv_f,
quat_vf, v_fc_f, a_fc_f, quat_fc)
% Simple kinematic equation to move the sensed states from a position
% on a rigid body to another position within that rigid body.
%
% Inputs:
% gyro_iv_v Inertial angular velocity sensed at NAV in NAV
% accel_iv_v Inertial accelerometer sensed at NAV in NAV
% quat_vf Quaternion from NAV to FAB
% r_fv_f Position vector from FAB to NAV, in m
% v_fv_f Velocity vector from FAB to NAV, in m/s
% a_fv_f Acceleration vector from FAB to NAV, in m/s
% quat_fc Quaternion from COM to FAB
% r_fc_f Position vector from FAB to COM, in m
% v_fc_f Velocity vector from FAB to COM, in m/s
% a_fc_f Acceleration vector from FAB to COM, in m/s
%
% Outputs:
% gyro_ic_c Inertial angular velocity sensed at COM in COM
% accel_ic_c Inertial accelerometer sensed at COM in COM
%
% Note 1: Differentiating the gyroscope adds a lot of noise. We could
% filter this, but for now just ignore it because it shouldn’t really matter
% for this application. To-do.
%
% Note 2: We can't take out the inertial components because we do not know
% the state of the vehicle within the inertial frame
%
% Author: Jeff Mays

% Ensure shape
quat_vf = reshape(quat_vf, [4,1]);
quat_fc = reshape(quat_fc, [4,1]);
gyro_iv_v = reshape(gyro_iv_v, [3,1]);
accel_iv_v = reshape(accel_iv_v, [3,1]);
r_fv_f = reshape(r_fv_f, [3,1]);
r_fc_f = reshape(r_fc_f, [3,1]);
a_fv_f = reshape(a_fv_f, [3,1]);
v_fv_f = reshape(v_fv_f, [3,1]);
v_fc_f = reshape(v_fc_f, [3,1]);
a_fc_f = reshape(a_fc_f, [3,1]);

% Find relative motion
r_cv_f = r_fv_f - r_fc_f;
v_cv_f = v_fv_f - v_fc_f;
a_cv_f = a_fv_f - a_fc_f;

% Find frame relationships
C_v_f = quat_ab_to_C_a_b(quat_vf);
C_f_c = quat_ab_to_C_a_b(quat_fc);

% Move inputs from NAV to FAB
gyro_iv_f = C_v_f * gyro_iv_v;
accel_iv_f = C_v_f * accel_iv_v;

% Assume alpha_iv_f is zero
alpha_iv_f = zeros(3,1);

% Move from NAV to COM
rel_frame_accel = a_cv_f;
sensed_accel_total = accel_iv_f;
eul_accel = cross(alpha_iv_f, r_cv_f);
centripetal_accel = cross(gyro_iv_f, cross(gyro_iv_f, r_cv_f));
coriolis_accel = 2 * cross(gyro_iv_f, v_cv_f);

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

9

% Remove body frame effects
accel_ic_f = sensed_accel_total - rel_frame_accel - eul_accel - centripetal_accel - coriolis_accel;
accel_ic_c = reshape(C_f_c * accel_ic_f, [3,1]);

% Assume vehicle is rigid
gyro_ic_c = reshape(C_f_c * gyro_iv_f, [3,1]);

end

Figure 7: ESTIMATOR/NAV/KINEMATICS

6.2. STATE

The state submodule estimates the states of the vehicle, providing estimates of parameters such as dynamic
pressure, tilt off vertical, and altitude.

Figure 8: ESTIMATOR/STATE

The enable submodule is used to tell the system when it is in a flight like state.

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

10

Figure 9: ESTIMATOR/STATE/ENABLE

The attitude submodule is used to estimate the attitude of the vehicle in the vertical local geographic frame.
It does this by utilizing a complementary attitude filter as well as a simple gyroscope integrator to derive an
attitude quaternion from the UEN frame to the FAB frame.

Figure 10: ESTIMATOR/STATE/ATTITUDE

function q = eulR_to_quat(eulR)
 % RPY Euler in radians to quaternion
 %
 % Author: Jeff Mays
 % Euler to Quaternion (Page 52 of Aircraft Control and Simulation by Stevens, Lewis, and Johnson 3rd. Edition

 cy = cos(eulR(3) * 0.5);
 sy = sin(eulR(3) * 0.5);
 cp = cos(eulR(2) * 0.5);
 sp = sin(eulR(2) * 0.5);
 cr = cos(eulR(1) * 0.5);
 sr = sin(eulR(1) * 0.5);

 q = zeros(4,1);
 q(1) = cr * cp * cy + sr * sp * sy;
 q(2) = sr * cp * cy - cr * sp * sy;
 q(3) = cr * sp * cy + sr * cp * sy;
 q(4) = cr * cp * sy - sr * sp * cy;

 % Normalize
 q = q / sqrt(q'*q);
end

Figure 11: ESTIMATOR/STATE/ ATTITUDE/eulR_to_quat

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

11

Below is the complementary filter used for estimating attitude. Internally, it can also simply integrate
the gyro or use both the accelerometer and gyroscope to derive attitude.

Figure 12: ESTIMATOR/STATE/ ATTITUDE/COMP_ATT_FILTER_VERTICAL

Should the gyro be integrated, we use simple forward Euler integration as shown below.

Figure 13: ESTIMATOR/STATE/ ATTITUDE/GYRO_ATTITUDE

function eulDot = gyro_to_eulDot(omega, eul)

% Gyro to Euler rate
phi = eul(1);
theta = eul(2);
psi = eul(3); %#ok<NASGU>

PHI = [1 sin(phi)*tan(theta) cos(phi)*tan(theta); ...
 0 cos(phi) -sin(phi); ...
 0 sin(phi)/cos(theta) cos(phi)/cos(theta)];

eulDot = PHI * omega;

end

Figure 14: ESTIMATOR/STATE/ ATTITUDE/gyro_to_eulDot

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

12

Figure 15: ESTIMATOR/STATE/ ATTITUDE/ACCEL_TO_VERT_ATTITUDE

Figure 16: ESTIMATOR/STATE/ATTITUDE/GYRO_INTEGRATOR

function quat_dot = gyro_integrator(omega, quat_prev)

% Pre-load
quat_dot = [1; 0; 0; 0]; %#ok<NASGU>

% Reshape
omegap = reshape(omega, [3,1]);

% Quat matrix
Aq = [-quat_prev(2) -quat_prev(3) -quat_prev(4); ...
 quat_prev(1) -quat_prev(4) quat_prev(3); ...
 quat_prev(4) quat_prev(1) -quat_prev(2); ...
 -quat_prev(3) quat_prev(2) quat_prev(1)];

quat_dot = 0.5 * Aq * omegap;
end

Figure 17: ESTIMATOR/STATE/ATTITUDE/GYRO_INTEGRATOR/gyro_integrator

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

13

We similarly have a complementary filter on the vertical altitude estimate where we blend the low frequency
barometer measurements with the high frequency acceleration measurements.

Figure 18: ESTIMATOR/STATE/ATLTITUDE

Within this submodule, we need to be able to filter the system accordingly.

Figure 19: ESTIMATOR/STATE/ALTITUDE/enable

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

14

The hypsometric equation is used to derive the altitude we are at given a datum of pressure from the
barometer.

Figure 20: ESTIMATOR/STATE/ALTITUDE/COMP_BARO_INS_ALTIMETER

function baro_alt_m = hypsometric_formula(press_pa, temp_c, reset)
% Hypsometric formula
%
% Author: Jeff Mays

% Force datatypes
press_pa = single(press_pa);
temp_c = single(temp_c);
reset = logical(reset);

% Const
C_to_K = 273.15;

persistent base_pa
if reset || isempty(base_pa)
 base_pa = press_pa;
end

% Hypsometric
baro_alt_m = ((base_pa / press_pa) ^ (1/5.257) - 1) * (temp_c + C_to_K) / (0.0065);

end

Figure 21: ESTIMATOR/STATE/ALTITUDE/COMP_BARO_INS_ALTIMETER/hypsometric_formula

function [tilt, heading] = quat_to_tilt_heading(quat_ab)
% Tilt and Heading off a resolved quaternion

% Get DCM
C_a_b = quat_ab_to_C_a_b(quat_ab);
vb = C_a_b * [1; 0; 0];

% tilt
tilt = acos(vb(1) / sqrt(dot(vb, vb)));

% heading
heading = atan2(vb(2), vb(3));

end

Figure 22: ESTIMATOR/STATE/quat_to_tilt_heading

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

15

function [rho, qbar] = derive_qbar(vel, temp_c, baro_pa)
% This function attempts to determine the air density and dynamic pressure
% of the vehicle.

% Const
Rd = 287.058; % J/(kg*K), Specific gas constant for dry air
C_to_K = 273.15; % C to K

% rho = P / (R * T)
temp_k = temp_c + C_to_K;
rho = baro_pa / (Rd * temp_k);

% qbar = 1/2 * rho * v ^ 2
qbar = 0.5 * rho * vel ^ 2;

end

Figure 23: ESTIMATOR/STATE /derive_qbar

6.3. THRUST

Thrust is first considered non-zero when the pyro ignitor is lit during the launch segment. Thrust is then non-
zero until the end of Boost where the EVENTS SWC detects SRM burnout. The thrust estimate is directly used
downstream in the ALLOCATOR SWC to represent TVC effectiveness in the effector mixing routine. We use a
constant average of the expected thrust so that we do not need to consider the change in effectiveness of the
TVC during the burn. It also aids in robustness should the expected thrust profile deviate from the realized
profile. The controller uses gain scheduling during flight; therefore, this simplification should bake into the
entire closed loop system.

Figure 24: ESTIMATOR/THRUST

6.4. MASS

The mass estimation software is the simplest of the software inside the estimator. Even though there are
elements of the vehicle that are changing mass during the flight, for this application, we only need to know a
representative set of characteristics. These values are used downstream in the ALLOCATOR and keeping these
values constant makes the controller loop-gain easier to manage.

JeffsLaboratory.com NMSW03 – Flight Manager Estimator

16

Figure 25: ESTIMATOR/MASS

6.5. POWER

The power subsystem consumes the analog voltage dividers that are connected to the various power systems
and calculates the voltage that exists on that system. These include the battery, battery eliminator circuit
(BEC), A and B servo buses, navigator power, ignitor power, and A and B chute pyro power. We can use the
voltages on these lines to infer if a power switching mosphet worked, or if a particular subsystem has sufficient
power to work.

Figure 26: ESTIMATOR/POWER

function [battery_voltage, bec_voltage, servoA_mosfet_voltage, servoB_mosfet_voltage, ...
 nav_mosfet_voltage, igniter_mosfet_voltage, chuteA_mosfet_voltage, ...
 chuteB_mosfet_voltage] = fcn_analog_to_voltage(battery_analog, bec_analog, ...
 servoA_analog, servoB_analog, nav_analog, igniter_analog, chuteA_analog, ...
 chuteB_analog, adc_bits, uC_voltage, R2, R1)

% Adc range
adc_range = 2^adc_bits-1;

% Determine voltages
battery_voltage = single(battery_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
bec_voltage = single(bec_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
servoA_mosfet_voltage = single(servoA_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
servoB_mosfet_voltage = single(servoB_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
nav_mosfet_voltage = single(nav_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
igniter_mosfet_voltage = single(igniter_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
chuteA_mosfet_voltage = single(chuteA_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));
chuteB_mosfet_voltage = single(chuteB_analog * (uC_voltage / adc_range) / (R2 / (R1 + R2)));

end

Figure 27: ESTIMATOR/POWER /ANALOG_to_VOLTAGE

